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S. A. Telyakovskiı̆ (1964, Izv. Akad. Nauk. SSR. Ser. Mat. 28, 1209–1236) proved
an integrability condition for cosine series. No condition superior to that has been
given so far. In this paper we identify the atomic structure of the Hardy type space
that can be associated with this condition. As a consequence, we conclude that
Telyakovskiı̆’s condition is equivalent to certain Sidon type inequalities. Then on
the basis of this equivalence we show how the atomic technique can be used to
extend Telyakovskiı̆’s condition to several systems, including Walsh series and
integrals, in a uniform way. © 2001 Academic Press
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1. INTRODUCTION

Let a=(ak) be a null sequence of real numbers. The following estimate
is due to Telyakovskiı̆ [20]

F
p

0

: C
.

k=0
ak cos kx : dx [ C 1 C

.

k=0
|Dak |+C

.

n=2

: C
[n/2]

k=1

Dan−k−Dan+k
k
: 2 , (1)

where Dak=ak−1−ak (k \ 1), and Da0=0. (Here and later C will always
denote an absolute positive constant not necessarily the same in different
occurrences.) We note that the inequality in (1) is strongly related to and is
an improvement of an earlier result of Boas [2]. Let us introduce the
sequence transform TN, and call it discrete Telyakovskiı̆ transform, as
follows

(TNa)n= C
[n/2]

k=1

an−k−an+k
k

(n \ 2).



Set (TNa)0=(TNa)1=0. Then (1) can be formulated as

F
p

0

: C
.

k=0
ak cos kx : dx [ C(||Da||a1+||TN(Da)||a1),

where Da stands for the sequence of differences. It means that if the right
side is finite then the pointwise limit of the cosine series represents an inte-
grable function. Several integrability conditions were given for cosine series
since (1) had been proved. It turned out that, however, some of them were
incomparable with (1) no one was superior to that. For a summary on such
conditions and comparison analysis we refer the reader to [1], [3], [15]
and [9]. We note that the proof of (1) is quite long, and makes use of
special properties of the trigonometric system. That might be why,
however, generalizations exist (see e.g. Liflyand [14]) the condition has not
yet been extended to other popular orthonormal systems like for example
the Walsh system. One of our goals is to overcome this shortage.

We will need the continuous version TR+, called Telyakovskiı̆ transform.
It is defined for any locally integrable function f: R+W R by

TR+f(x)=F
x/2

0

f(x−t)−f(x+t)
t

dt=F
3x/2

x/2

f(t)
x−t

dt, (2)

where the integral is meant in the Cauchy principal value sense. TR+

resembles the Hilbert transform H which is defined as

Hf(x)=F
.

−.

f(t)
x−t

dt=F
.

0

f(x−t)−f(x+t)
t

dt.

For technical reasons we omitted the usual 1/p factor in the definition
of H. Even formally it is obvious, that there should be connection between
the Telyakovskiı̆ and the Hilbert transforms. In order to demonstrate that
there is an essential difference between them let us take the characteristic
function q[0, d] (d > 0). It is known that ||Hq[0, d] ||L1(R)=.. On the other
hand,

(TR+q[0, d])(x)=˛
0 0 [ x [ 2d/3,
ln(x/2)− ln |d−x| 2d/3 [ x [ 2d,
0 x > 2d.

Consequently, ||TR+q[0, d] ||L1(R+)=d ln 3.
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2. HARDY SPACES GENERATED BY THE TELYAKOVSKIĬ
TRANSFORMS

Let the Hardy spaces HR, HR+, and HN be defined as

HR={f ¥ L1(R) :Hf ¥ L1(R)},

HR+={f ¥ L1(R+) :TR+f ¥ L1(R+)},

HN={a ¥ a1 :TNa ¥ a1},

with the norms

||f||HR=||f||L1(R)+||Hf||L1(R),

||f||HR+=||f||L1(R+)+||TR+f||L1(R+),

||a||HN=||a||a1+||TN a||a1.

In our first result the atomic structure of HR+ will be characterized. f will
be called an R+-atom of

(a) first type if f=d−1q[0, d] with some d > 0,
(b) second type if there exists a finite interval I … R+ such that

(i) supp f … I, (ii) F
I

f=0, (iii) ||f||L.(R+) [ |I|−1,

where |I| stands for the length of I. The collection of R+-atoms will be
denoted by AR+. Then our result reads as follows.

Theorem 2.1.

(i) f ¥ HR+ if and only if f can be decomposed as f=;.

k=0 akfk,
where fk ¥AR+, and ak ¥ R (k ¥ N) with (ak) ¥ a1. (The convergence in the
decomposition is a. e. and in L1(R+) norm.) Moreover

||f||HR+ % inf C
.

k=0
|ak |,

where the infimum is taken over all decompositions of f.

(ii) HR+ is isomorphic to the subspace of odd functions in HR.

Remark 2.1. First we note that the equivalence in (ii) was recognized
by Liflyand (see e.g. [16], [14]). Actually, it is a consequence of two
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integral equalities that can be found in the proof of Theorem 2 in [14]. For
the sake of completeness we give a short proof by using these formulas.
Part (i), i.e. the atomic characterization of HR+ is based on the iso-
morphism in (ii). In connection with it we want to call the attention to a
similar situation. Namely, the real nonperiodic Hardy space on [0,1) is
isomorphic to the subspace of even functions of the real periodic Hardy
space on [−p, p] (see e.g. [13, Chapter 5]). The importance of the equiv-
alence in (i) is that it allows to use atomic technique in proofs and then
express the results in a closed form by the transform.

Since HN is defined by TN, the discrete analogue of TR+, it can be con-
sidered as the discrete version of HR+. There are, however, at least two
other natural ways to introduce such a space.

Namely, let Pa denote the step function associated to the real sequence a
by

(Pa)(x)=a[x] (x ¥ R+),

where [x] stands for the integer part of x. Then following the scheme a ¥ ap

(1 [ p [.) if and only if Pa ¥ Lp(R+), and ||a||ap=||Pa||Lp(R+) we can
introduce a discrete version of HR+.

Another way to define the discrete space is based on the concept of
atomic decomposition. Let the real sequence a be called an N-atom if Pa is
an R+-atom. The collection of N-atoms is denoted by AN. Then a discrete
analogue of HR+ can be introduced by N-atoms.

The following theorem shows that no matter which way we choose we
get to the same space.

Theorem 2.2. Let a be a real sequence. Then the following statements
are equivalent.

(i) a ¥ HN,

(ii) Pa ¥ HR+,

(iii) a can be decomposed as a=;.

k=0 aka
(k), where a (k) ¥AN, and

ak ¥ R (k ¥ N) with (ak) ¥ a1. (The convergence in the decomposition is in a1

norm.)

Moreover

||Pa||HR+ % ||a||HN % inf C
.

k=0
|ak |,

where the infimum is taken over all decompositions of a.
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Remark 2.2. We note that a modification of the reasoning used by
Liflyand in the proof of Theorem 5 in [14] would actually prove the
equivalence of (i) and (ii). Here, we will give a proof by only using elemen-
tary estimates.

3. INTEGRABILITY CONDITIONS

In this section first we will apply Theorem 2.1, especially the atomic
decomposition of HR+, to show that (1) is equivalent to a Sidon type
inequality. As a consequence, we obtain that Telyakovskiı̆’s condition can
be extended to several orthonormal systems in a uniform way. Then we
give a continuous version of our result.

Let F=(fk) be an orthonormal system defined on [0, 1) whose terms
are in L.[0, 1]. Set DFk=;k−1

j=0 fj, D
F
0 — 0 (k ¥ N). Our theorem reads as

follows.

Theorem 3.1. Suppose that there exists a constant CF such that

F
1

0

: C
.

k=0
akD

F
k (x): dx [ CF (a ¥AN). (3)

Then for any null-sequence a with Da ¥ HN the F-series ;.

k=0 akfk is the
F-Fourier-series of an f ¥ L1[0, 1], and ||f||L1[0, 1] [ CF ||Da||HN .
If in addition

sup
k ¥ N

|DFk (x)| <. (a.e. x ¥ [0, 1]) (4)

then f is the pointwise limit of ;.

k=0 akfk.

Remark 3.1. First we remark that inequality (3) is a so called Sidon
type inequality. The study of them has a long history. We refer the reader
to [9] for details. Theorem 3.1 shows that a Sidon type inequality implies
Telyakovskiı̆’s condition for the system F. If (4) holds for F then also the
converse is true as one can easily show it by summation by parts.

Now we take two examples, the cosine and the Walsh systems. Inequality
(3), in a different form, was proved for the trigonometric Dirichlet kernels
by Schipp in [17]. Namely, first he associated a step function on [0, 1]
with every finite sequence. Then he proved the corresponding inequality by
using the norm of the real non-periodic Hardy space on [0, 1]. If we trans-
late his result into our terminology then it turns out that it is exactly (3).
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We note that the trigonometric Dirichlet kernels satisfy condition (4).
Therefore, we can conclude by Theorem 3.1 that the Telyakovskiı̆’s and
Schipp’s results are equivalent.

Also, Schipp proved (3) for the Walsh–Dirichlet kernels with some
restrictions in [17]. Namely, he employed the dyadic Hardy space on
[0, 1] in his proof and showed (3) for dyadic atoms. The author showed in
[11] that Schipp’s result can be extended to any N-atom. We note that, as
we proved in [7] and [8], (3) is best possible in a sense for the Walsh and
the cosine systems. Since also the Walsh–Dirichlet kernels satisfy condition
(4) we have the following corollary.

Corollary 3.1. Let F=(fk) stand for the cosine or the Walsh system.
Suppose that a is a null sequence such that Da ¥ HN. Then ;.

k=0 akfk is
F-Fourier series and

F
1

0

: C
.

k=0
akfk(x): dx [ C 1 C

.

n=0
|Dan |+C

.

n=2

: C
[n/2]

k=1

Dan−k−Dan+k
k
: 2 .

Since a Sidon type inequality holds for several other systems, including
UDMD, Ciesielski, certain polynomial systems (see [17], [18]) etc., an
inequality similar to that in Corollary 3.1 can be formalized for them as
well.

The following theorem can be considered as the continuous version of
Corollary 3.1. For the sake of compactness we confine ourselves to two
basic models, the cosine and the Walsh integrals. Let Y denote either the
cosine or the Walsh system on R+. The Y transform ĝY of a g ¥ L1(R+)
is defined as ĝY(t)=>.0 g(x) kt(x) dx (t ¥ R+). Then the following inte-
grability theorem holds for Y.

Theorem 3.2. Let f : R+W R be a locally absolutely continuous func-
tion with fŒ ¥ HR+, and limtQ. f(t)=0. Then

||g||L1(R+) [ C ||fŒ||HR+ , and ĝY=f,

where g(x)=limuQ. >u0 f(t) kx(t) dt.

We note that the cosine case of Theorem 3.2 was proved by Liflyand [14]
by adapting Telyakovskiı̆’s method for cosine integrals. Also, it was par-
tially claimed and proved by Giang and Móricz in [12]. We are aware that
in some cases, for instance in the proof of the inversion formula in
Theorem 3.2, one can refer to earlier results or can take shortcuts by using
special properties of the trigonometric system. Our aim is, however, to
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demonstrate how the atomic technique makes it possible to provide a
uniform treatment for the two systems. In order to do that we will need the
following Sidon type inequality in which DYt (x)=> t0 ku(x) du (x, t ¥ R+)
denotes the Y-Dirichlet kernel.

Theorem 3.3. Let Y denote either the Walsh or the cosine system on R+.
Then

F
R+
: F
R+
h(t) DYt (x) dt : dx [ C ||h||HR+ (h ¥ HR+). (5)

4. PROOFS

Proof of Theorem 2.1. First we show (ii). Let f ¥ L1(R+) and let fO
denote the odd extension of f ¥ L1(R+), i.e.

fO(x)=˛
f(x) x \ 0

−f(−x) x < 0.

Since also HfO is odd it is enough to prove that >.0 |HfO−TR+f| [
C >.0 |f|. By definition

HfO(x)−TR+f(x)=2(I1f(x)+I2f(x))−I3f(x) (x > 0),

where

I1f(x)=F
x/2

0
f(t)

t
x2−t2

dt,

I2f(x)=F
.

3x/2
f(t)

t
x2−t2

dt,

I3f(x)=F
3x/2

x/2

f(t)
x+t

dt.

A direct calculation shows (see [14]) that

||I1f||L1(R+) [ F
.

0
F
x/2

0
|f(t)|

t
x2−t2

dt dx=ln`3 ||f||L1(R+),

||I2f||L1(R+) [ F
.

0
F
.

3x/2
|f(t)|

t
x2−t2

dt dx=ln`5 ||f||L1(R+).
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On the other hand ||I3f||L1(R+) [ ln(5/3) ||f||L1(R+). Therefore, f ¥ HR+ if
and only if fO ¥ HR, and ||f||HR+ % ||fO ||HR .

Now we will show (i), i.e. that HR+ has an atomic structure. Our proof
will be based on the isomorphism in (ii) and on the atomic structure of HR

(see [5] or [6]). A function g ¥ L.(R) is called an R-atom, in notation
g ¥AR, if there exists a finite interval I … R such that

(i) supp g … I, (ii) F
I

g=0, (iii) ||g||L.(R) [ |I|−1.

Then an atomic decomposition similarly to what is described in (i) of
Theorem 2.1 for HR+ holds for every g ¥ HR with AR+ replaced by AR.

Since ||fO ||HR % ||f||HR+ we only need to show that to any decomposition
;.

k=0 akgk (gk ¥AR, k ¥ N) of fO there corresponds a decomposition
;.

k=0 bkfk (fk ¥AR+, k ¥ N) of f for which ;.

k=0 |bk | [ C;.

k=0 |ak |, and
conversely.

Let ;.

k=0 akgk be an atomic decomposition of fO, and set fk(x)=
(gk(x)−gk(−x)) (x ¥ R, k ¥ N). Then fO=;.

k=0
1
2 akfk since fO is odd.

Moreover, f=;.

k=0
1
2 akf

+
k , where f+k=fk q[0,.]. Let Ik … R be a finite

interval such that supp gk … I, ||gk ||L.(R) [ |Ik |−1, and define N1 … N as the
collection of k’s for which 0 ¨ Ik. Then f+k ¥AR+ for any k ¥N1.

If, on the other hand, k ¥N2=N0N1 then there exists a minimal d > 0
for which supp gk … [−d, d]. Thus ||f+k ||L.(R+) [ 2 ||gk ||L.(R) [ 2d

−1. Set

fk=
1
4
1f+k −1F

d

0
f+k 2

1
d
q[0, d] 2 , hk=

1
d
q[0, d] (k ¥N2).

Then f+k=4fk+(>d0 f+k ) hk, where hk is a first type and fk is a second type
R+-atom. Consequently,

f= C
k ¥N1

1
2 akf

+
k+ C

k ¥N2

2akfk+ C
k ¥N2

1 1
2 ak F

d

0
f+k 2 hk

is a proper atomic decomposition of f.
For the other direction let f=;.

k=0 akfk be an atomic decomposition of
an f ¥ HR+. Then fO=;.

k=0 ak(fk)O. The proof can be finished by noting
that if fk is a first type R+-atom then 1/2(fk)O is an R-atom while if fk is a
second type R+-atom then (fk)O is a sum of two R- atoms. L

Proof of Theorem 2.2. Let us start with the equivalence of (i) and (ii).
By definition ||a||a1=||Pa||L1(R+) and ||TNa||a1=||P(TNa)||L1(R+).
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Therefore we only need to prove that

||TR+(Pa)−P(TNa)||L1(R+) [ C ||a||a1. (6)

Write x=n+d (n ¥ N, 0 < d < 1) and subdivide the interval of integration
in TR+(Pa) according to the terms of a. Then after grouping the corre-
sponding terms we will have two main sums and a remainder. Namely,

TR+(Pa)(x)−P(TNa)(x)=A1(x)+A−1(x)+R(x),

where

Ai(x)= C
[n/2]

k=1
an+ik 1F

k−id

k+i(1−d)

1
t
dt+

i
k
2 (i=±1).

Elementary calculation shows that

|A±1(x)| [ C
[n/2]

k=2

2
k2
|an±k |+|an±1 | w(d)

with w(d)=|ln d|+|ln(1−d)|+2. For the remainder R(x) we have

|R(x)| [ 1 |an |+C
1

j=0
(|an+[n/2]+j |+|an−[n/2]−j |)) w(d).

Note that >10 w(d) dd=4. Therefore, by integrating |A±1 | and R first on
[n, n+1] with respect to d then summing on n we obtain (6).

In this section let the HR+, and HN norms considered to be defined via
the atomic decompositions. Suppose that a is a real sequence that can be
decomposed as a=;.

k=0 aka
(k) (a (k) ¥AN, (ak) ¥ a1). Then Pa ¥ HR+, and

||Pa||HR+ [ inf ;.

k=0 |ak | are straightforward by the definition of N-atoms.
Therefore, (iii) implies (ii).

For the proof of the other direction define Ef as follows

Ef(x)=F
[x]+1

[x]
f (f ¥ L1(R+), x ¥ R+).

Let f ¥AR+. We will consider Ef. If f is a second type atom then let I ¥ R+

be such a finite interval for which supp f … I, and ||f||L.(R+) [ |I|−1. Then
there exists [n, n+k] ‡ I (n, k ¥ N) with minimal length. Thus >.0 Ef=
>I f=0, and supp Ef … [n, n+k]. Note that if k=1 then Ef — 0. Moreover,
||Ef||L.(R+) [ min{1, ||f||L.(R+)}, and k [ |I|+2. Hence we have 1/3 Ef ¥AR+.
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Let f be a first type atom, i.e. f=d−1q[0, d] with some d > 0. If d [ 1 then
Ef=q[0, 1] ¥AR+. For d > 1 let us take the decomposition f=f1+f2, where

f1=([d]+1)−1 q[0, [d]+1],

f2=(d−1−([d]+1)−1) q[0, d]−([d]+1)−1 q[d, [d]+1].

Clearly, f1 is a first type, and f2 is a second type atom. Hence Ef=Ef1+
3E(1/3 f2), where Ef1, E(1/3 f2) ¥AR+.

By definition, if Eg ¥AR+ then there exists b ¥AN such that Pb=Eg.
Consequently, in view of Pa=E(Pa), any atomic decomposition of Pa in
HR+ can naturally be associated with a decomposition of a in HN, and
||a||HN [ 4 ||Pa||HR+ . L

Proof of Theorem 3.1. Let a be a null-sequence such that Da ¥ HN.
Moreover, let Da=;.

k=0 aka
(k) be an atomic decomposition of Da. Since

limnQ. ||Da−;n
k=0 aka

(k)||a1=0 we have that

Daj=C
.

k=0
aka

(k)
j . (7)

We note that the convergence is absolute and uniform in j. Indeed, a (k) ¥

AN implies Pa (k) ¥AR+. Then by definition there exists a finite interval
I … R+ such that supp Pa (k) … I, and ||Pa (k)||L.(R+) [ |I|−1. Obviously,
|I|−1 [ 1. Hence |a (k)

j | [ ||Pa (k)||L.(R+) [ 1. Consequently, ;.

k=n |aka
(k)
j | [

;.

k=n |ak |Q 0 as nQ..
Let us consider the series

C
.

k=0
ak C

.

j=0
a (k)
j D

F
j . (8)

(3) implies that this series converges to an f in L1[0, 1] with ||f||L1[0, 1] [
CF ||Da||HN . (Here the HN norm is defined via the atomic decompositions
instead of the discrete Telyakovskiı̆ transform.) By definition

f̂(a)=F
1

0
ffa=F

1

0
C
.

k=0
ak C

.

j=0
a (k)
j D

F
j fa. (9)

The inner sum has finite many terms since a (k) ¥AN. Moreover, we have by
(3) that

F
1

0

: C
.

j=0
a (k)
j D

F
j fa : [ CF ||fa ||L.[0, 1].
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Therefore it follows from (ak) ¥ a1 that we may interchange the integration
and the summations to obtain

f̂(a)=C
.

k=0
C
.

j=a+1
aka

(k)
j .

This double series is absolutely convergent. Indeed, by the definition of
N-atoms we have ;.

j=0 |a
(k)
j | [ 1. Hence

C
.

k=0
C
.

j=a+1
|ak | |a

(k)
j | [ C

.

k=0
|ak | <.. (10)

Then it follows from (7) that

f̂(a)= C
.

j=a+1
C
.

k=0
aka

(k)
j = C

.

j=a+1
Daj=aa.

The first part of Theorem 3.1 is proved.
Set C(x)=supk ¥ N |D

F
k (x)| (x ¥ [0, 1]) and suppose that C(x) <. for

a.e. x ¥ [0, 1]. By summation by parts we obtain

C
n

k=0
akfk(x)=C

n

k=0
DakD

F
k (x)+anD

F
n+1(x) (x ¥ [0, 1], n ¥ N).

Note that a is a null-sequence. Moreover, Da ¥ HN implies that a is of
bounded variation. Consequently, ;.

k=0 akfk(x) exists for any x ¥ [0, 1]
with C(x) <., and ;.

k=0 akfk(x)=;.

k=0 DakD
F
k (x).

Recall that f was defined by the L1[0, 1] limit of the series in (8). Now
we show that the series in (8) converges to ;.

k=0 akfk(x) for a.e. x ¥ [0, 1].
Since the pointwise and the L1[0, 1] limits coincide if both exist we
conclude that f=;.

k=0 akfk almost everywhere.
Indeed, by (10) we have

C
.

j=0
|aj | C

.

k=0
|a (j)
k | |D

F
k (x)| [ C(x) C

.

j=0
C
.

k=0
|aj | |a

(j)
k | <..

Consequently,

C
.

j=0
aj C

.

k=0
a (j)
k D

F
k (x)=C

.

k=0
DFk (x) C

.

j=0
aja

(j)
k =C

.

k=0
DakD

F
k (x)

=C
.

k=0
akfk(x). L
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For the proof of Theorem 3.3 we need two lemmas.

Lemma 4.1. Let DT+

t (x)=> t0 e2pisx ds=(e2pitx−1)/(2pix) (0 < x, t <.).
Then

F
R+
: F
R+

h(t) DT+

t (x) dt : dx [ C

holds for any h ¥AR+ of second type.

Proof. We will adapt Schipp’s method that he used for the e2pinx (n ¥ N)
system in [17]. Let h be an R+-atom of second type, with supp h … [u, v],
and ||h||L.(R+) [ 1/(v−u). We may suppose that u=0. Indeed, h#(t)=
h(u+t) (t ¥ R+) is an R+-atom of second type, and it is easy to see that
>vu h=0 implies

F
v

u
h(t) DT+

t (x) dt=e2piu F
v−u

0
h#(t) DT+

t (x) dt (x, t ¥ R+).

Let now h denote an R+-atom with supp h … [0, v], ||h||L.(R+) [ 1/v,
>v0 h=0. Thus

F
R+
: F
R+

h(t) DT+

t (x) dt : dx=F
1/v

0

: F v
0

h(t) DT+

t (x) dt : dx

+F
.

1/v

: F v
0

h(t) DT+

t (x) dt : dx

=I1+I2.

Since |DT+

t (x)| [ v (0 [ t [ v) we have

I1 [ F
1/v

0
F
v

0
v |h(t)| dt dx=||h||L1(R+) [ 1.

Set Id2=>d0 q[1/v,.)(x) |>v0 h(t) DT+

t (x) dt| dx (d > 0). If

g(x)=
q[1/v,.)(x)
2px

sgn 1F v
0

h(t) e2pitx dt2 ,

where sgn(z)=z̄/|z| (z ¥ C, z ] 0, z̄ is the complex conjugate of z), then Id2
can be written as

Id2=F
d

0
g(x) F

v

0
h(t) e2pitx dt dx.
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After changing the order of the integrations we have

Id2=F
v

0
h(t)(q[0, d]5 g)(t) dt.

Let us apply first Cauchy–Schwarz inequality and then Parseval equality to
obtain

Id2 [ ||h||L2(R+) ||q[0, d] g||L2(R+) [
1
2p

1
v1/2
1F.

1/v

11
x
22 dx2

1/2

=
1
2p
,

which is independent of d. L

Before stating the next lemma we introduce the concept of generalized
Walsh functions. To this order let us take the binary expansion of
x ¥ [0,.) defined as x=;.

j=−. xj2
−j−1, where xj=0 or 1. In case when

there are two expansions of this form, i.e. in case of dyadic rationals, we
take the one that terminates in 0’s. The functions

wy(x)=(−1) C .

j=−. xjy−j−1 (0 [ x, y <.) (11)

are called generalized Walsh functions. For any two nonnegative numbers
x, y their dyadic sum is defined by

x+̇y= C
.

j=−.
|xj−yj | 2−j−1.

Then it is clear by (11) that

wt(x) wt(y)=wt(x+̇y) (0 [ x, y <.) (12)

provided x+̇y is dyadic irrational. Recall that the generalized Dirichlet
kernels are defined as DW

t (x)=> t0 wu(x) du (0 [ t, x <.). Concerning the
basic properties of the generalized Walsh functions and Walsh–Dirichlet
kernels we refer the reader to [19].

Lemma 4.2. Set

hk, n=2−n−1(q[k2n, (k+1) 2n]−q[(k+1) 2n, (k+2) 2n]) (k ¥ N, n ¥ Z). (13)

Then

F
R+
: F
R+

hk, n(t) D
W
t (x) dt : dx [ C (k ¥ N, n ¥ Z). (14)
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Proof. By definition wk2n+t=wk2nwt (k ¥ N, n ¥ Z, 0 [ t < 2n). There-
fore, DW

k2n+t=DW
k2n+wk2nD

W
t , and DW

(k+1) 2n+t=DW
k2n+wk2nD

W
2n+w(k+1) 2nD

W
t .

Then

F
R+

hk, n(t) D
W
t (x) dt=2−n−1 1F (k+1) 2

n

k2n
DW
t (x) dt−F

(k+2) 2n

(k+1) 2n
DW
t (x) dt2

=2−n−1 1wk2n(x) F
2n

0
DW
t (x) dt−2

nwk2n(x) D
W
2n(x)

−w(k+1) 2n(x) F
2n

0
DW
t (x) dt2 .

Hence

: F.
0

hk, n(t) D
W
t (x) dt : [

1
2n
: F 2

n

0
DW
t (x) dt :+

1
2
DW
2n(x).

The first term is the generalized Walsh–Fejér kernel KW
2n . In [10] the

author proved that for any h ¥ L.loc(R
+) the following inequality holds

F
R+

1
2n
: F 2

n

0
h(t) DW

t (x) dt : dx [ ||q[0, 2n)h||L.(R+) (n ¥ Z).

In particular, choosing h=q[0, u) and n ¥ Z so that 2n−1 < u [ 2n we obtain

sup
u > 0

||KW
u ||L1(R+) <.. (15)

Moreover (see e.g. [19]), ||DW
2n ||L1(R+)=1. Consequently, (14) holds for any

k ¥ N, n ¥ Z. L

Proof of Theorem 3.3. The left side of (5) is subadditive. Therefore, it is
enough to show that (5) holds for any R+-atom.

Let us start with the cosine case. Since DT
t (x)=> t0 cos ux du is the real

part of DT+

t (x) (t, x ¥ R+) we have that (5) follows for second type atoms
from Lemma 4.1. If h ¥AR+ is of first type then h=1

u q[0, u] with some
u > 0, and KT

u (x)=
1
u >u0 DT

t (x) dt=>
R+ h(t) DT

t (x) dt is the generalized
trigonometric Fejér kernel. Thus for such atoms (5) is equivalent to
supu > 0 ||K

T
u ||L1(R+) <. which is a known property (see e.g. [4]) of the

trigonometric Fejér kernels.
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In case of the Walsh system see (15) for the first type atoms. Taking
second type atoms we note that it was shown by the author in [10] that (5)
holds for dyadic second type atoms. Namely, for atoms h for which
supp h … [k2n, (k+1) 2n), and ||h||L.(R+) [ 2−n with proper k ¥ N, n ¥ Z.
Moreover, by Lemma 4.2 we have that (5) holds for atoms defined in (13).
Let now h be an arbitrary second type atom. Since the left side of (5) is
subadditive it is enough to show that h can be decomposed as a sum of
dyadic atoms and atoms of type in (13). Let I … R+ be a finite interval for
which supp h … I, ||h||L.(R+) [ |I|−1, and >I h=0. If 2N−1 < |I| [ 2N (N ¥ Z)
then there is a K ¥ N such that I … [K2N, (K+2) 2N]. Set

hi(t)=
1
4
1h(t)−2−N F

(K+i+1) 2N

(K+i) 2N
h2 q[(K+i) 2N, (K+i+1) 2N)(t),

where i=0, 1. Then the hi’s are dyadic atoms. It follows from >I h=0 that
2−N > (K+1) 2

N

K2N h=−2−N > (K+2) 2
N

(K+1) 2N h. Therefore, if

h2(t)=12−N F
(K+1) 2N

K2N
h2 (q[K2N, (K+1) 2N)−q[(K+1) 2N, (K+2) 2N))

then there exists |d| [ 4 such that, using the notation of Lemma 4.2, h2=
dhK, N. Thus h can be decomposed as h=dhK, N+4h0+4h1. L

For the proof of Theorem 3.2 we need the following Lemma. Before
stating it we redefine the cosine system by kt(x)=`2

p
cos tx (t, x ¥ R+)

along with the corresponding Dirichlet kernel in order that we will be able
to treat the Walsh and cosine cases uniformly.

Lemma 4.3. Let Y denote the cosine or the Walsh system on R+. Let
h ¥AR+ and define h ¥ L1(R+) by h(x)=>R+ h(t) DYt (x) dt (t ¥ R

+). Then

ĥY(u)=F
.

u
h(t) dt (u ¥ R+).

Proof. We note that h ¥ L1(R+) follows from Theorem 3.3. By defini-
tion

ĥY(u)=F
R+
h(x) ku(x) dx= lim

nQ.
F
2n

0
h(x) ku(x) dx (u ¥ R+).

Using the definitions of h and DYt (t ¥ R+) we can write

F
2n

0
h(x) ku(x) dx=F

2n

0
F
.

0
F
t

0
h(t) ks(x) ku(x) ds dt dx.
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Recall that h vanishes outside of a compact interval. Consequently, we
may apply Fubini’s theorem to obtain

F
2n

0
h(x) ku(x) dx=F

.

0
h(t) F

t

0
F
2n

0
ks(x) ku(x) dx ds dt.

Let us evaluate > t0 >2
n

0 ks(x) ku(x) dx ds. First we consider the Walsh case.
It follows from the definition (11) that wx(y)=wy(x) (x, y ¥ R+). Then by
(12) we have

F
2n

0
ws(x) wu(x) dx=DW

2n(s+̇u)

for a.e. s ¥ R+. Since DW
2n=2nq[0, 2 −n) (n ¥ Z) (see [19]) we obtain

F
2n

0
ws(x) wu(x) dx=2nq[k2 −n, (k+1) 2 −n)(s)

for a.e. s ¥ R+, where k is defined by u ¥ [k2−n, (k+1) 2−n). Consequently,

F
t

0
F
2n

0
ws(x) wu(x) dx ds=˛

0 t < k2−n,

2nt−k k2−n [ t < (k+1) 2−n,

1 t > (k+1) 2−n.

Let now Y be the cosine system. Then

F
2n

0
cos(sx) cos(ux) dx=

1
p
1 sin 2n(u+s)

u+s
+

sin 2n(u−s)
u−s
2 .

By changing variables we obtain

F
t

0

sin 2n(u±s)
u±s

ds=± F
2n(u±t)

2ny

sin y
y

dy.

Thus

F
t

0
F
2n

0
cos(sx) cos(ux) dx ds=

1
p
F
2n(u+t)

2n(u−t)

sin y
y

dy.

We can conclude that

lim
nQ.

F
t

0
F
2n

0
ks(x) ku(x) dx ds=q[u,.)(t) (t ] u)
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uniformly for t ¥ [0, u−d] 2 [u+d,.) (d > 0), and that

: F t
0
F
2n

0
ks(x) ku(x) dx ds : [ C (t > 0, n ¥ N)

for both the cosine and the Walsh systems. Therefore, we have

: F.
u

h(t) dt−F
.

0
h(x) ku(x) dx :

= lim
nQ.

: F.
0

h(t)1q[u,.)(t)−F
t

0
F
2n

0
ks(x) ku(x) dx ds2 dt :

[ F
[0, u−d] 2 [u+d,.)

|h(t)| lim
nQ.

:q[u,.)(t)−F
t

0
F
2n

0
ks(x) ku(x) dx dx: dt

+C F
u+d

u−d
|h(t)| dt

[ 2Cd ||h||L.(R+) (d > 0).

Consequently, ĥY(u)=>.u h(t) dt. L

Proof of Theorem 3.2. If Y denotes the cosine system then similarly to
Lemma 4.3 the kt’s are defined as kt(x)=`

2
p cos tx (t, x ¥ R+). Set

g(x)= lim
uQ.

F
u

0
f(t) kx(t) dt (x > 0). (16)

First we show that g is well defined. By definitionkt(x)=kx(t), andDYt (x)=
> t0 ks(x) ds=> t0 kx(s) ds (x, t ¥ R+). Then integration by parts yields

F
u

0
f(t) kx(t) dt=[f(t) DYt (x)]

u
0−F

u

0
fŒ(t) DYt (x) dt.

It is known (see [19] and [4]) that |DYt (x)| [ C(1/x) (t, x ¥ R+, x > 0).
Since D0 — 0 it follows from limtQ. f(t)=0 that lim uQ.[f(t) D

Y
t (x)]

u
0=

0. Moreover, fŒ ¥ L1(R+), and again |DYt (x)| [ C(1/x) imply that the
function fŒ(t) DYx (t) is integrable with respect to t for any x > 0. Conse-
quently, g is well defined and

g(x)=−F
.

0
fŒ(t) DYt (x) dt (0 < x <.).
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Since fŒ ¥ HR+ we conclude by Theorem 3.3 that g is integrable, and ||g||L1(R+)
[ C ||fŒ||HR+ .

In order to prove f=ĝY we will write g in another form. Namely,
let ;.

k=0 bkhk be an atomic decomposition of fŒ. Then we have by
Theorem 3.3 that the series

C
.

k=0
bk F

.

0
hk(t) D

Y
t dt

converges in L1(R+). Since |DYt (x)| [ C(1/x) (t, x ¥ R+, x > 0), fŒ ¥ L1(R+),
and fŒ=;.

k=0 bkhk a.e. we conclude by Lebesgue’s theorem on integration
that

g(x)=− C
.

k=0
bk F

.

0
hk(t) D

Y
t (x) dt (x > 0).

Thus

ĝY(u)=− C
.

k=0
bk F

.

0
F
.

0
hk(t) D

Y
t (x) ku(x) dx dt (u ¥ R+).

Let us apply Lemma 4.3 to obtain

ĝY(u)=− C
.

k=0
bk F

.

0
hk(t) dt=−F

.

u
C
.

k=0
bkhk(t) dt

=−F
.

u
fŒ(t) dt=f(u) (u ¥ R+). L
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